Prime Numbers Investigation

What to do:

- 1. Take a pile of counters and count them.
- 2. Record the total number of counters on your sheet in the first column.
- 3. Arrange your counters into an array and draw it on your sheet in column two.
- 4. How many different arrays for that number can you find? Record them all.
- 5. Which numbers can be arranged into only one array? These ones are prime numbers.
- 6. Put a tick or a cross in the final column to show whether that number is a prime number or not.
- 7. Repeat with different numbers of counters.

Think About It

How many prime numbers did you identify?

Prime numbers are numbers that only

have two factors: 1 and itself, e.g.

5 is a prime number as

its only factors are

Remember: 1 is **not** a

only has one factor (1)

prime number as it

1 and 5.

How could you check if you are correct?

Example:

Number of Counters	Arrays O	Prime Number (×/√)
13	000000000000000000000000000000000000000	\checkmark
16		×

Prime Numbers Investigation Prime Number Number of Arrays Counters (×/√)

Prime Numbers Investigation **Answers**

Number of Counters	Arrays	Prime Number		
Counters (×/·) Prime numbers up to 100 include: (×/·) 2, 3, 5, 7, 11, 13, (×/·) 17, 19, 23, 29, 31, (×/·) 37, 41, 43, 47, 53, (×/·) 59, 61, 67, 71, 73, (×/·) 79, 83, 89, 97 (×/·)				
Arrays for prime numbers can only be shown as one complete row of counters. Any array that is incomplete means that that number is a prime number.				
For example, 11 is a prime number as it can be represented with this single row of				
0000000000				
This incomplete array also shows that 11 is a prime number.				
- • • • • • • • • • •	••••••••••••••••			

